AVENTICS

Directional valves - Pneumatically operated

Brochure

2 AVENTICS

Directional valves ► Pneumatically operated **Series 740**

	5/2-directional valve, Series 740 ► Qn = 700 - 950 l/min ► pipe connection ► compressed air connection output: Ø 8x1 - Ø 10x1 ► Can be assembled into blocks ► Manual override: without ► suitable for ATEX	3
	5/2-directional valve, Series 740-CP ► Qn = 950 I/min ► pipe connection ► compressed air connection output: Ø 10x1 ► Can be assembled into blocks ► corrosion-protected ► Manual override: without ► suitable for ATEX	5
	5/2-directional valve, Series 740 ► Qn = 700 - 950 l/min ► pipe connection ► compressed air connection output: Ø 8x1 - Ø 10x1 ► Can be assembled into blocks ► Manual override: with detent ► suitable for ATEX	7
	5/2-directional valve, Series 740-CP ► Qn = 950 I/min ► pipe connection ► compressed air connection output: Ø 10x1 ► Can be assembled into blocks ► corrosion-protected ► Manual override: with detent ► suitable for ATEX	9
Accessories		
	Subbases and accessories	11
من الأي 11•	Fittings - Accessories, Series 740	13

5/2-directional valve, Series 740

► Qn = 700 - 950 I/min ► pipe connection ► compressed air connection output: Ø 8x1 - Ø 10x1 ► Can be assembled into blocks ► Manual override: without ► suitable for ATEX

Technical Remarks

- The min. control pressure must be adhered to, since otherwise faulty switching and valve failure may result!
- The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C.
- The oil content of compressed air must remain constant during the life cycle.
- Use only the approved oils from AVENTICS, see chapter "Technical information".

				Compressed	Flow rate value	•	Part No.			
	Blocking principle	Input	Output	Exhaust	Pilot control exhaust					
						[l/min]	[kg]			
	Single base plate principle, Plate principle	Ø 8x1	Ø 8x1			700		5717400000		
		Ø 10x1	Ø 10x1	M14x1	Ø 8x1	950	0.18	5717450000		
Nominal flow Qn at p1 with throttle	Nominal flow Qn at p1 = 6.3 bar and Δp = 1 bar with throttle									

Pilot pressure range

x: Working pressure (bar)

y: Pilot pressure (bar)

a: Min. pilot pressure at port 14 (Z) depending on working pressure

4

Directional valves ► Pneumatically operated

5/2-directional valve, Series 740

► Qn = 700 - 950 I/min ► pipe connection ► compressed air connection output: Ø 8x1 - Ø 10x1 ► Can be assembled into blocks ► Manual override: without ► suitable for ATEX

5/2-directional valve, Series 740-CP

► Qn = 950 I/min ► pipe connection ► compressed air connection output: Ø 10x1 ► Can be assembled into blocks ► corrosion-protected ► Manual override: without ► suitable for ATEX

Pilot
Sealing principle
Mounting on manifold strip
Working pressure min./max.
Ambient temperature min./max.
Medium temperature min./max.
Medium
Max. particle size
Oil content of compressed air
Materials:
Housing
Seals
Front plate

Diaphragm poppet valve internal Soft sealing PRS strip 2 bar / 10 bar $-15^{\circ}C / +60^{\circ}C$ $-15^{\circ}C / +60^{\circ}C$ Compressed air 50 μ m 0 mg/m³ - 5 mg/m³

Polyoxymethylene Acrylonitrile Butadiene Rubber Polyarylamide

Technical Remarks

The min. control pressure must be adhered to, since otherwise faulty switching and valve failure may result!

Version

- The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C.
- The oil content of compressed air must remain constant during the life cycle.
- Use only the approved oils from AVENTICS, see chapter "Technical information".

			C	ompressed a	air connection	Flow rate value		Note	Part No.
	Blocking principle	Input	Output	Pilot control exhaust					
						[l/min]	[kg]		
	Single base plate principle, Plate principle	Ø 10x1	Ø 10x1	M14x1	Ø 8x1	950	0.18	1)	5717451000
1) See diagram Nominal flow Qn at p1 = 6.3 bar and Δp = 1 bar									

with throttle

Pilot pressure range

x: Working pressure (bar)

y: Pilot pressure (bar)

a: Min. pilot pressure at port 14 (Z) depending on working pressure

6 AVENTICS

Directional valves ► Pneumatically operated

5/2-directional valve, Series 740-CP

► Qn = 950 I/min ► pipe connection ► compressed air connection output: Ø 10x1 ► Can be assembled into blocks ► corrosion-protected ► Manual override: without ► suitable for ATEX

5/2-directional valve, Series 740

► Qn = 700 - 950 I/min ► pipe connection ► compressed air connection output: Ø 8x1 - Ø 10x1 ► Can be assembled into blocks ► Manual override: with detent ► suitable for ATEX

Pilot	
Sealing principle	
Mounting on manifold strip	
Working pressure min./max.	
Ambient temperature min./max	•
Medium temperature min./max	•
Medium	
Max. particle size	
Oil content of compressed air	
Materials:	
Housing	
Seals	

Diaphragm poppet valve internal Soft sealing PRS strip 1.5 bar / 10 bar -15°C/+60°C -15°C/+60°C Compressed air 50 µm 0 mg/m³ - 5 mg/m³

Polyoxymethylene Acrylonitrile Butadiene Rubber

Technical Remarks

The min. control pressure must be adhered to, since otherwise faulty switching and valve failure may result!

Version

- The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C.
- The oil content of compressed air must remain constant during the life cycle.
- Use only the approved oils from AVENTICS, see chapter "Technical information". .

			air connection	Flow rate value	Weight	Note	Part No.		
	Blocking principle		Output	Exhaust	Pilot control exhaust				
						[l/min]	[kg]		
$14 \qquad \qquad$	Single base	Ø 8x1	Ø 8x1			700			5717410000
	plate principle, Plate principle	Ø 10x1	Ø 10x1	M14x1	Ø 8x1	950	0.23	1)	5717460000
1) See diagram					*				

Nominal flow Qn at p1 = 6.3 bar and Δp = 1 bar with throttle

Pilot pressure range

x: operating pressure (bar) y: control pressure (bar)

a: maximum control pressure depending on operating pressure

b: minimum control pressure depending on operating pressure

8

Directional valves ► Pneumatically operated

5/2-directional valve, Series 740

► Qn = 700 - 950 l/min ► pipe connection ► compressed air connection output: Ø 8x1 - Ø 10x1 ► Can be assembled into blocks ► Manual override: with detent ► suitable for ATEX

5/2-directional valve, Series 740-CP

► Qn = 950 I/min ► pipe connection ► compressed air connection output: Ø 10x1 ► Can be assembled into blocks ► corrosion-protected ► Manual override: with detent ► suitable for ATEX

Version
Pilot
Sealing principle
Mounting on manifold strip
Working pressure min./max.
Ambient temperature min./max.
Medium temperature min./max.
Medium
Max. particle size
Oil content of compressed air
Materials:
Housing
Seals
Front plate

Diaphragm poppet valve internal Soft sealing PRS strip 2 bar / 10 bar -15°C/+60°C -15°C/+60°C Compressed air 50 µm 0 mg/m³ - 5 mg/m³

Polyoxymethylene Acrylonitrile Butadiene Rubber Polyarylamide

Technical Remarks

- The min. control pressure must be adhered to, since otherwise faulty switching and valve failure may result!
- The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C.
- The oil content of compressed air must remain constant during the life cycle.
- Use only the approved oils from AVENTICS, see chapter "Technical information".

			C	air connection	Flow rate value		Note	Part No.	
	Blocking principle	Input	Pilot control exhaust						
						[l/min]	[kg]		
$14 \xrightarrow{4} \xrightarrow{12} $	Single base plate principle, Plate principle	Ø 10x1	Ø 10x1	M14x1	Ø 8x1	950	0.23	1)	5717461000
1) See diagram Nominal flow Qn at p1 = 6.3 bar and Δp = 1 bar									

with throttle

Pilot pressure range

x: operating pressure (bar) y: control pressure (bar)

a: maximum control pressure depending on operating pressure b: minimum control pressure depending on operating pressure

Directional valves ► Pneumatically operated

5/2-directional valve, Series 740-CP

► Qn = 950 I/min ► pipe connection ► compressed air connection output: Ø 10x1 ► Can be assembled into blocks ► corrosion-protected ► Manual override: with detent ► suitable for ATEX

Directional valves ► Pneumatically operated

Series 740 Accessories

Subbases and accessories

Ambient temperature min./max. Medium Working pressure min./max.

Materials: Base plate Seals -15°C / +50°C Compressed air See table below

Polyoxymethylene Acrylonitrile Butadiene Rubber

Technical Remarks

- The min. control pressure must be adhered to, since otherwise faulty switching and valve failure may result!
- The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C.
- The oil content of compressed air must remain constant during the life cycle.
- Use only the approved oils from AVENTICS, see chapter "Technical information".

Туре	Working pressure min./max.	Weight	Part No.
		[kg]	
Supply plate, complete with O-rings	0 / 10	0.245	8985003902
Supply plate, corrosion-protected, complete with O-rings	0 / 10	0.237	8985003972
Sandwich plate 740, complete with O-rings.	0 / 10	0.089	8985003922
End plate	0 / 10	0.092	8985003912
Dummy flange for reserve places complete with seals	0 / 10	0.033	5727406012
Adapter for separate air supply	-	0.008	8939102500
Sealing kit: 10 O-rings, connection "R" and "S", 5 O-rings, connection "P" Ø 8 mm, 5 O-rings, connection "P" Ø 10 mm	0 / 10	0.009	5727400092

Ø AVENT 12

Directional valves ► Pneumatically operated

Series 740 Accessories

Dimensions

Series 740 Accessories

Part No.	Туре	ØA	В	С	Fig.		
8939008500	Reducing fitting Ø 8x1 to Ø 6x incl. O-ring	4	25	M12x1	Fig. 1		
8939008510	Reducing fitting Ø 10x1 to Ø 6x1 incl. O-ring	4	26	M14x1	Fig. 1		
8939008520	Reducing fitting Ø 10x1 to Ø 8x1 incl. O-ring	6	27	M14x1	Fig. 1		
8938000910	Reducing fitting Ø 8x1 to Ø 6x1, push-in incl. O-ring	6	29.5	-	Fig. 2		
8938000920	Reducing fitting Ø 8x1 to Ø 8x1, push-in incl. O-ring	8	29.5	-	Fig. 2		
8939008800	fitting, for port R and S for 8x1	6	24	M14x1	Fig. 1		
8931220200	Tubing connector for fabric-reinforced tub- ing Ø 8x3, incl. O-Ring	8	33	M12x1	Fig. 3		
8938306520	elbow fitting Ø 10x1 to Ø 6x1, incl. O-ring	4	-	-	Fig. 4		
8938306530	elbow fitting Ø 10x1 to Ø 8x1, incl. O-ring	6	-	-	Fig. 4		
8938306540	elbow fitting Ø 10x1 to Ø 10x1, incl. O-ring	8	-	-	Fig. 4		
8938306550	elbow fitting Ø 8x1 to Ø 6x1, push-in, incl. O-ring	6	-	-	Fig. 5		
8938306560	elbow fitting Ø 8x1 to Ø 8x1, push-in, incl. O-ring	8	-	-	Fig. 5		
8919905404	tube nut, Ø 8x1	-	-	M12x1	Fig. 7		
8919905414	tube nut, Ø 10x1	-	-	M14x1	Fig. 7		
8993809904	Silencers	-	-	-	Fig. 8		
8919905502	Screw plug, Ø 8x1	-	-	M12x1	Fig. 9		
8919905512	Screw plug, Ø 10x1	-	-	M14x1	Fig. 9		
8932404100	Adapter, Ø 8x1, G 1/4, incl. O-ring	-	27	M12x1	Fig. 10		

AVENTICS GmbH Ulmer Straße 4 30880 Laatzen, GERMANY Phone +49 511 2136-0 Fax +49 511 2136-269 www.aventics.com info@aventics.com

Find more contact information at www.aventics.com/contact

AVENTICS

Only use the AVENTICS products shown in industrial applications. Read the product documentation completely and carefully before using the product. Observe the applicable regulations and laws of the respective country. When integrating the product into applications, note the system manufacturer's specifications for safe use of the product. The data specified only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that the products are subject to a natural

process of wear and aging.

27-07-2016

An example configuration is depicted on the title page. The delivered product may thus vary from that in the illustration. Subject to change. @ AVENTICS S.à r.l.

This document, as well as the data, specifications and other information set forth in it, are the exclusive property of AVENTICS S.à r.l.. It may not be reproduced or given to third parties without its consent. PDF online