Rotary Cylinder Series MRQ

Size: 32, 40

A rectilinear rotation unit that compactly integrates a slim cylinder and a rotary actuator.

The timing of the rectilinear and rotational movements can be set as desired.
Rotational movements are possible at the forward end, the back end, or during a rectilinear movement.

Effective output

(At 0.5 MPa)
Size $32=1 \mathrm{Nm}$
Size $40=1.9 \mathrm{Nm}$

Data 1
 How to Set Rotation Time

Unit Conversions

SI units are used in this catalog．The unit conversion between SI and conventional units are as follows：		
Pressure	$1 \mathrm{MPa}=10.1972 \mathrm{kgf} / \mathrm{cm}^{2}$	Oscillation acceleration $100 \mathrm{~m} / \mathrm{s}^{2}=10.1972 \mathrm{G}$
Cylinder thrust／load	$100 \mathrm{~N}=10.1972 \mathrm{kgf}$	Standard air：Symbol（ANR）
Torque	$1 \mathrm{Nm}=10.1972 \mathrm{kgfcm}$	Temperature $20^{\circ} \mathrm{C}\{293 \mathrm{~K}\}$ ，Air with
Moment of inertia	$1 \mathrm{kgm}^{2}=10.1972 \mathrm{kgcm} / \mathrm{s}^{2}$	an absolute pressure of 760 mmHg
Kinetic energy	1 J	$=10.1972 \mathrm{kgcm}$
		$\{101.3 \mathrm{kPa}\}$ ，and a relative humidity of 65%

Allowable Kinetic Energy

Even if the torque that is required by the load in the rotation movement is small，the internal parts could become damaged depending on the inertia of the load．Therefore，select an appropriate model for your application by taking the load＇s moment of inertia，kinetic energy，and rotation time into consideration．（A chart that depicts the moments of inertia and the rotation time is provided to facilitate the selection process．）

Setting of Rotation Time

Set the rotation time within the adjustable rotation time range that ensures stable operation，based on the table on the right．Setting the speed higher than the upper limit could cause the actuator to stick or slip．

How to Calculate Moment of Inertia

Size	Allowable kinetic energy（ J$)$	Adjustable rotation time range that ensures stable operation
$\mathbf{3 2}$	0.023	0.2 to 1
40	0.028	0.2 to 1

Formula of moment of inertia is subject to load shape．Refer to the moment of inertia formula on p．4－247

3 Selection of a Model

Select a model by applying the calculated moment of inertia to the chart below．

Moment of inertia and rotation time

How to calculate the load energy

$$
E=\frac{1}{2} I \omega^{2}, \omega=\frac{2 \theta}{t}
$$

E：Kinetic energy．．．．．．．．．（J）
I：Moment of inertia $\cdots\left(\mathrm{kgm}^{2}\right)$
ω^{*} ：Angular velocity．．．．．（rad／s）
θ ：Rotation angle．．．．．．．（rad）
$180^{\circ}=3.14 \mathrm{rad}$
t ：Rotation time $\cdots \cdots(\mathrm{s})$
＊The ω that is obtained here is the terminal angular velocity of an isometric acceleration movement．

〈How to read graph〉
－Moment of inertia $\cdots \cdots \cdot .0 .0025 \mathrm{kgm}^{2}$
－Rotation time $\cdots \cdots \cdot \cdot 0.7 \mathrm{~S} / 90^{\circ}$ ，size 40 will be selected．

〈Calculation example〉

Load shape：Column with a radius of 0.2 m and a weight of 0.2 kg
Rotation time： $0.7 \mathrm{~s} / 90^{\circ}$
$\mathrm{I}=0.2 \times \frac{0.2^{2}}{2}=0.004 \mathrm{kgm}^{2}$

[^0]
Data(2
 Moment of Inertia

4 Calculation of moment of inertia I (I: Moment of Inertia (kgm2) m: Load weight (kg))

OThin rod

Position of rotation axis: Perpendicular to the piston rod and passes through centre line.

$$
\mathrm{I}=\mathrm{m}_{1} \quad \frac{\mathrm{a}_{1}^{2}}{3}+\mathrm{m}_{2} \frac{\mathrm{a}_{2}^{2}}{3}
$$

2)Thin rod

Position of rotation axis: Perpendicular to the rod and passes through the centre of gravity.

$$
\mathrm{I}=\mathrm{m} \quad \frac{\mathrm{a}^{2}}{12}
$$

3)Thin rectangle board (Parallelogram)

Position of rotation axis: Parallel to side b and passes a centre of gravity.

$$
\mathrm{I}=\mathrm{m} \quad \frac{\mathrm{a}^{2}}{12}
$$

4 Thin rectangle board (Parallelogram)

Position of rotation axis: Perpendicular to the board and passes through centre line.

$$
\left[=\mathrm{m}_{1} \quad \frac{4 \mathrm{a}_{1}^{2}+\mathrm{b}^{2}}{12}+\mathrm{m}_{2} \frac{4 \mathrm{a}_{2}^{2}+\mathrm{b}^{2}}{12}\right.
$$

Thin rectangle board (Parallelogram)

Position of rotation axis: Passes through centre of gravity and
 perpendicular to the board. (Same for mula regardless of board thickness.)

$$
\mathrm{I}=\mathrm{m} \quad \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{12}
$$

7 Sphere

Position of rotation axis: Sphere centred about axis of rotation

$$
\mathrm{I}=\mathrm{m} \quad \frac{2 r^{2}}{5}
$$

Position of rotation axis: Disc centred about axis of rotation.

$$
\mathrm{I}=\mathrm{m} \quad \frac{\mathrm{r}^{2}}{4}
$$

9With a load at the lever end

$I=m_{1} \quad \frac{a_{1}^{2}}{3}+m_{2} a_{2}^{2}+K$
Ex.) Referring to case (7) where " W_{2} " is a sphere,

$$
\mathrm{K}=\mathrm{m} 2 \frac{2 \mathrm{r}^{2}}{5}
$$

10Gear transmission

1. Find moment of inertia IB around the rod (B).
2. Replace moment of inertia Iв around the $\operatorname{rod}(A)$ with I_{A}, I $A=\left(\frac{a}{b}\right)^{2}$ IB

Data 3

Theoretical Output

5Linear Motion Part Theoretical Output

Linear motion Part theoretical output table
Unit: N

Size	Rod diameter (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)						
				0.15	0.2	0.3	0.4	0.5	0.6	0.7
32	12.2	OUT	804	121	161	241	322	402	482	563
		IN	675	101	135	202	270	337	405	472
40	14.2	OUT	1256	183	251	377	502	628	754	879
		IN	1081	162	216	324	433	541	649	757

(Formula) Thrust $(\mathrm{N})=$ Piston area $\left(\mathrm{mm}^{2}\right) \times$ Operating pressure (MPa)

Generation power from the linear motion part

Calculation formula

$$
\begin{align*}
& F_{1}=\eta \times A_{1} \times P \tag{1}\\
& F_{2}=\eta X A_{2} \times P \\
& A_{1}=\frac{\pi}{4} D^{2} \tag{3}\\
& A_{2}=\frac{\pi}{4}\left(D^{2}-d^{2}\right) \tag{4}
\end{align*}
$$

$\mathrm{F}_{1}=$ Cylinder force generated on the extending side (N)
$\mathrm{F}_{2}=$ Cylinder force generated on the retracting side (N)
η = Load rate
$\mathrm{A}_{1}=$ Piston area on the extending side $\left(\mathrm{mm}^{2}\right)$
$\mathrm{A}_{2}=$ Piston area on the retracting side $\left(\mathrm{mm}^{2}\right)$
D = Tube bore size (mm)
$\mathrm{d}=$ Piston rod diameter (mm)
$\mathrm{P}=$ Operating pressure (MPa)
Note) As shown in the diagram below, the retracting side pressure surface area of the double acting single rod cylinder is reduced by the area that corresponds to the piston rod's cross sectional area.

Load rate η

In the process of selecting an appropriate cylinder, remember that there are sources of resistance other than the load that apply in the output direction. Even at a standstill as shown in the diagram below, the resistance that is incurred by the seals or bearings in the cylinder must be subtracted. Furthermore, during operation, the reactive force that is created by the exhaust pressure also acts as resistance.

Because resistance that counters the cylinder output vary with conditions such as the cylinder size, pressure, and speed, it is necessary to select an air cylinder of a greater capacity. For this purpose, the load ratio is used; make sure that the load ratio values listed below are obtained when selecting an air cylinder.

1) Using the cylinder for stationary operation: load ratio $\eta=0.7$ (Fig. 1)
2) Using the cylinder for dynamic operation: load ratio $\eta=0.5$ (Fig. 2)
3) Using a guide type for horizontal operation: load ratio $\eta=1$ (Fig. 3)

Fig. $1 \eta=0.7$ or more

Fig. $2 \eta=0.5$ or less

Fig. $3 \eta=1$ or less

Note) For dynamic operation, the load ratio may be set even lower if it is particularly necessary to operate the cylinder at high speeds. Setting it lower provides a greater margin in the cylinder output, thus enabling the cylinder to accelerate more quickly.

Data3

Theoretical Output/Side Load/Allowable Moment

(Graph 2) Cylinder output on the retracting side (Double acting)

How to read graph

(1) Decide on the direction in which the cylinder output will be used (the extension or the retraction side). (See graph 1 for the extension side, and graph 2 for the retraction side.)
(2) Find the point at which the load ratio (diagonal line) and the operating pressure (horizontal line) intersect. Then, extend a vertical line from that point. (Determine the load ratio η in accordance with the load ratio η that has been determined on p.4-248)
(3) Extend a horizontal line from the necessary cylinder output (left diagram), and find the point at which it intersects with the vertical line of (2). The diagonal line above that intersecting point represents the inner diameter of the tube that can be used.

6 Theoretical Output of the Rotating Part Table of Theoretical Output of the Rotating Part Unit: Nm

Size	Operating pressure (MPa)							
	0.15	0.3	0.3	0.4	0.5	0.6	0.7	
$\mathbf{3 2}$	0.34	0.45	0.68	0.9	1.13	1.36	1.58	
$\mathbf{4 0}$	0.64	0.85	1.27	1.7	2.12	2.54	2.97	

Graph of effective output

7 The allowable lateral load and the moment at the tip of the piston rod
An excessive amount of lateral load or moment applied to the piston rod could cause a malfunction or internal damage. The allowable load range varies by conditions such as the installed orientation of the cylinder body or whether an arm lever is attached to the tip of the piston rod. Find the allowable value from the diagram shown below and operate the rotary cylinder within that value.

1) Using the cylinder body installed horizontally:

To operate the rotary cylinder with the cylinder body installed horizontally, make sure that the total load that is applied to the tip of the piston rod will be within the value indicated in the table below. If the centre of gravity of the total load is not in the centre of the shaft, provide a balance weight as illustrated below so that moment in the rotational direction would not be applied to the tip of the piston rod.

Allowable side load on the piston end
Unit: N

Size	Stroke of linear part										
	5	10	15	20	25	30	40	50	75	100	
32	14	14	13	13	13	12	12	11	10	9	
$\mathbf{4 0}$	23	23	22	21	21	20	19	18	16	15	

2) Using the cylinder body installed vertically:

To operate the rotary cylinder with the cylinder body installed vertically, the total load that is applied to the tip of the piston rod must be within the thrust of the rectilinear portion in which the load ratio is taken into consideration.

If the centre of gravity of the total load is not in the centre of the shaft, it is necessary to calculate the moment. Make sure that the moment is within the value shown in the table below.

Affecting moment to the piston rod end Moment $=\mathrm{W}$ X L [Nm]

Allowable moment on the piston rod end

Size	Regardless of the stroke
32	$2.128[\mathrm{Nm}]$
40	$3.844[\mathrm{Nm}]$

Data4

Air Consumption

8 Air Consumption

Results are determined by measuring the factors through 1 complete cycle over one minute.
Rotatary Motion Part Angle of rotation: $90^{\circ}, 180^{\circ}$
Unit: $/ / \min (A N R)$

Size	Angle of rotation (Degree)	Inner volume (cm^{3})	Operating pressure (MPa)						
			0.15	0.2	0.3	0.4	0.5	0.6	0.7
32	80° to 100°	4.88	0.024	0.029	0.039	0.048	0.058	0.068	0.077
	170° to 190°	8.46	0.042	0.05	0.067	0.084	0.1	0.117	0.134
40	80° to 100°	9.22	0.046	0.055	0.073	0.091	0.109	0.128	0.146
	170° to 190°	15.90	0.079	0.095	0.126	0.157	0.189	0.22	0.251

Linear Motion Part
Unit: $/ / \min (A N R)$

Size	Stroke (mm)	Inner volume (cm^{3})		Operating pressure (MPa)						
		Head side	Rod side	0.15	0.2	0.3	0.4	0.5	0.6	0.7
32	5	4	3.4	0.018	0.022	0.029	0.037	0.044	0.051	0.059
	10	8	6.7	0.036	0.044	0.058	0.073	0.087	0.102	0.116
	15	12.1	10.1	0.055	0.066	0.088	0.11	0.132	0.154	0.176
	20	16.1	13.5	0.073	0.088	0.117	0.146	0.176	0.205	0.234
	25	20.1	16.9	0.092	0.11	0.147	0.183	0.22	0.256	0.293
	30	24.1	20.2	0.11	0.132	0.175	0.219	0.263	0.307	0.35
	40	32.2	27	0.147	0.176	0.235	0.293	0.351	0.41	0.468
	50	40.2	33.7	0.183	0.22	0.293	0.366	0.439	0.512	0.585
	75	60.3	50.6	0.275	0.33	0.439	0.549	0.658	0.768	0.877
	100	80.4	67.5	0.367	0.44	0.586	0.732	0.878	1.02	1.17
40	5	6.3	5.4	0.029	0.035	0.046	0.058	0.069	0.081	0.093
	10	13	11	0.058	0.07	0.093	0.116	0.139	0.162	0.185
	15	19	16	0.087	0.104	0.139	0.174	0.208	0.243	0.277
	20	25	22	0.116	0.139	0.185	0.231	0.277	0.324	0.37
	25	31	27	0.145	0.174	0.231	0.289	0.347	0.405	0.462
	30	38	32	0.174	0.209	0.278	0.347	0.416	0.485	0.555
	40	50	43	0.232	0.278	0.37	0.463	0.555	0.647	0.74
	50	63	54	0.29	0.348	0.463	0.578	0.694	0.809	0.924
	75	94	81	0.435	0.521	0.694	0.868	1.04	1.21	1.39
	100	126	108	0.58	0.695	0.926	1.16	1.39	1.62	1.85

Data 5

Air Requirements

9 Air Requirements

The required air volume, which is the amount of air that is required for operating the rotary cylinder at the prescribed speed, is necessary for selecting the F.R.L. equipment or the pipe size.

The amount of air requirement of rotary actuator $=0.06 \times \mathrm{Vx}(\mathrm{P} / 0.1013) / \mathrm{t} \quad \mathrm{e} / \mathrm{min}(\mathrm{ANR})$
V: Inner volume $=\mathrm{cm}^{3}$
P : Absolute pressure $=\{$ Operating pressure $(\mathrm{MPa})+0.1013\}$
t : Operating time $=\mathrm{s}$
Calculate the required air volume separately for the linear motion part and the rotary motion part. The required air volume for operating the linear motion and rotary motion parts simultaneously is the total of the individually obtained values.
Calculation example: Obtain the required air volume to be used from the operation chart shown below.
Model: MRQBS32-50CA-A73 Operating pressure: 0.5 MPa

Calculate the amount of air requirement for A, B, C and D respectively.
$A=0.06 \times 40.2 \times\{(0.5+0.1013) / 0.1013\} / 0.5=28.6 \mathrm{e} / \mathrm{min}$
$B=0.06 \times 4.88 \times\{(0.5+0.1013) / 0.1013\} / 0.5=3.5 \mathrm{e} / \mathrm{min}$
$C=B=3.5 \mathrm{e} / \mathrm{min}$
$D=0.06 \times 33.7 \times\{(0.5+0.1013) / 0.1013\} / 0.5=24 \ell / \mathrm{min}$
Since operation is simultaneous at C and D, total the respective amounts of air requirement.
$C+D=3.5+24=27.5 / \mathrm{min}$

Rotary Cylinder

Series MRQ

Size: 32, 40

How to Order

Standard Specifications

Fluid	Air (Non-lube)
Max. operating pressure	0.7 MPa
Min. operating pressure	0.15 MPa
Ambient and fluid temperature	0° to $60^{\circ} \mathrm{C}$ (No condensation)
Mounting	Basic style, Rod side flange style

Linear motion, Rotary motion/Specifications

Linear motion	Bore size (mm)	32	40
	Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}$	
	Cushion	With air cushion, Without air cushion	
	Port size	1/8	
Rolary motion	Output torque (At 0.5 MPa)	1 Nm	1.9 Nm
	Stable rotation time regulation range	0.2 to $1^{\mathrm{s}} / 90^{\circ}$	
	Cushion	-	
	Allowable kinetic energy	0.023J	0.028J
90,	Port size	Rc (PT) $1 / 8, \mathrm{M} 5 \times 0.8$ (The port is plugged for delivery.)	
	Backlash	2° or less	

* For detailed explanation of effective output, refer to the description on p.4-249

Applicable Auto switch

Function	Auto switch with contact point	Auto switch without contact point
	Grommet (Vertical cable access)	Grommet (Vertical cable access)
	D-A7■, A80, A79W	D-F7ロV
Linear motion part/	Grommet (Horizontal cable access)	Grommet (Horizontal cable access)
Rotary motion part	D-A7 \square H, A80H	D-F7 \square, J79, J79W, F-7 WW
	Connector	F7 \square F, F7BAL, F7NTL
	D-A73C, A80C	Connector
		D-J79C

* For further explanation, refer to the description on p.6-15

Linear Motion/Standard Motion

Size	Standard stroke (mm)
$32 / 40$	$5,10,15,20,25,30,40,50,75,100$

* Refer to p.4-262 for other intermediate strokes.

Weight

Size	Rotation angle	Basic weight (kg)	Add'l stroke weight (kg/mm)	Flange (kg)	
32	80° to 100°	1.4	0.004	0.5	
	170° to 190°	1.5			
40	80° to 100°	2.1	0.005		
	170° to 190°	2.3			
Calculation method: (Ex) MRQBS32-50CA					

Calculation method: (Ex) MRQBS32-50CA

- Basic weight............................... 1.4 kg
- Stroke additional weight $\cdots \cdots \cdots \cdots \cdots004 \times 50=0.2 \mathrm{~kg}$

Total 1.6 kg

Weight of a single auto switch

Unit: g

Applicable auto switch	Auto switch model		Length of lead wire	
			0.5 m	3 m *
Reed switch	D-A7■, A80, D-A7■H, A80H		10	52
	D-A73C, A80C		12	54
	D-A79W		11	53
Solid state switch	D-J79, J79W	2 wire	11	49
	D-F7	3 wire	12	56
		4 wire	14	56

* Write "L" at the end of the part number for 3 meters of lead wire. (Available for all the types. 3 metre type is standard for "D-F7BAL", "F79LF" and "F7NTL".)

Possible to exchange basic style with flange style

Specify with the part numbers shown below when ordering flange parts.			
Size	Part No.	Attached parts: Flange	
32	P317010-7		1 piece
40	P317020-7		

Series MRQ

Rotating direction

When pressure is applied from the arrow-marked side, the rod rotates clockwise.

Allowable lateral load to the piston rod end
Using friction fittings makes it easier to mount the load to the piston rod end.

2

Note) - The diagram shows the rotation angle with a reference position set at random. Each rotation angle end can be adjusted 5°.

- When the cylinder is pressurized from port B , range E can be adjusted by regulating angle adjustment screw C . When the cylinder is pressurized from port A, range F can be adjusted by regulating angle adjustment screw D.

Manufacturers of friction fittings/Models

Size	Miki Pully (ETP bushing)	Eyesell (Mechanical lock)	Nabeya Industry (Clamp lock)
$\mathbf{3 2}$	ETP-K-12	MA12 X 26	CLH-12 X 18
$\mathbf{4 0}$	ETP-K-14	MA14 X 28	CLH-14 X 23

*Consult the manufacturers concerning further information
like on specifications.

Backlash

The rotary motion part has a double-rack construction. The pinion gear has a hexagonal hole, and a slight clearance exists between this hole and the hexagonal flats of the piston rod. This clearance generates a backlash in the rotational direction of the piston rod.

Size	Adjusting angle per 1 rotation of angle adjusting screw
$\mathbf{3 2}$	5.7°
$\mathbf{4 0}$	4.8°

Precaution

\triangle Caution

The angle adjustment bolt is adjusted to a random position within the adjustable rotating range. Therefore, it must be readjusted to obtain the angle that suits your application.

* Part unnecessary for
models without a cushion

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminium alloy	Anodized
(2)	Cover	Aluminium alloy	Anodized
(3)	Plate	Aluminium alloy	Chromated
(4)	Packing	NBR	
(5)	End cover	Aluminium alloy	Anodized
(6)	Piston	Stainless steel	Soft nitriding
(7)	Pinion gear	Chrome molybdnum steel	Soft nitriding
(8)	Wearing	Resin	
(9)	Magnet	Magnet	
(10)	Bearing color	Aluminium alloy	Anodized
(11)	Steady brace cover	Aluminium alloy	Anodized
(12)	Tube	Aluminium alloy	Anodized
(13)	Head cover	Aluminium alloy	Anodized
(14)	Rod cover	Aluminium alloy	Platinum silver
(15)	Piston	Aluminium alloy	Chromated
(16)	Piston rod	Stainless steel	Soft nitriding
(17)	Non-rotating guide	Sintered metallic	Soft nitriding
(18)	Flange	Aluminium alloy	Platinum silver
(19)	O ring	NBR	
(20)	Rod packing guide	Aluminium alloy	Anodized
(21)	Color	Aluminium alloy	Anodized
(22)	Cushion ring	Rolled steel	Electroless nickel plated
(23)	O ring retainer	Aluminium alloy	Chromated
(24)	O ring	NBR	
(25)	Cushion valve Ass'y	Steel wire	
(26)	Wearing	Resin	
(27)	Hexagon socket head cap screw	Chrome molybdnum steel	Nickel plated
(28)	Plastic magnet	Magnet	
(29)	Switch mounting nut	Rolled steel	
(30)	Switch spacer	Resin	
(31)	Plug	Brass	Electroless nickel plated
(32)	Rod packing	NBR	
(33)	Piston packing	NBR	

Component Parts

No.	Description	Material	Note
(34)	Piston packing	NBR	
(35)	Cushion packing	NBR	
(36)	O ring	NBR	
(37)	O ring	NBR	
(38)	O ring	NBR	
(39)	O ring	NBR	
(40)	Hexagon socket head cap screw	Stainless steel	
(41)	Hexagon socket head cap screw	Stainless steel	
(42)	Hexagon socket head cap screw	Stainless steel	
(43)	Hexagon socket head cap screw	Stainless steel	
(44)	Cross-recessed pan head small screw	Steel wire	Nickel plated
(45)	Cross-recessed pan head small screw	Steel wire	Zinc chromate
(46)	Hexagonal socket head retaining ring	Steel wire	Electroless nickel plated
(47)	Compact hexagon nut	Stainless steel	
(48)	Hexagon nut with flange	Steel wire	Electroless nickel plated
(49)	Seal washer	Steel wire	
(50)	Steel ball	Steel wire	
(51)	R-shape snap ring	Steel wire	Zinc chromated
(52)	R-shape snap ring	Steel wire	Zinc chromated
(53)	R-shape snap ring	Steel wire	Zinc chromated
(54)	Bearing	Bearing steel	
(55)	Bearing	Bearing steel	
(56)	Shell type needle roller bearing	Bearing steel	
(57)	Thrust needle roller bearing	Bearing steel	
(58)	Bearing ring	Bearing steel	

Spare Parts List

Description	Size		
	32	$\mathbf{4 0}$	
Spare parts Ass'y	P31701-1	P31702-1	
	The parts of the above-mentioned number		
	(4) (8) (19) (26) (32) (33) (34) (36) (37) (38) (39) (49)		

size 32
 Basic Style/MRQBS32

The dimensions below shows an actuator with a rotation angle of 80° to 100° style.

Note) M6 depth 7

The dimension above left shows an actuator with a rotation angle of 80° to 100° style with a stroke of 15 mm .

Mounting screw dimensions (Distinction of stroke)

Flange Style/MRQFS32

(10,

Mounting screw dimensions (Distinction of stroke)

Size 40

M5 (Plug, Back side)

4-M6 $\times 1$ depth 7

Note) M6 depth 7

The dimension above left shows an actuator with a rotation angle of 80° to 100° style with a stroke of 15 mm .

Mounting screw dimensions (Distinctions of stroke)

Flange Style/MRQFS40

The dimension above left shows an actuator with a rotation angle of 80° to 100° style with a stroke of 15 mm .
Mounting screw dimensions (Distinctions of stroke)
Mounting screw 3 pcs.
Mounting screw 4 pcs.

Series MRQ
 Auto Switch Specifications

（D）Refer to p．6－15 concerning further information on specifications of the auto switch single body．
Models of applicable auto switches

Mounting	Auto switch model		Lead wire，Ability，Electrical entry
Linear part Rotary part	Reed switch	D－A7ロ，A80	Grommet（Vertical）
		D－A7ロH，A80H	Grommet（Horizontal）
		D－A73C口，A80C	Connector
		D－A79W	Grommet（2 colour indication，Vertical）
	Solid state switch	D－F7口V	Grommet（Vertical）
		D－F7 \square ，J79	Grommet（Horizontal）
		D－J79C	Connector
		D－F7口W，J79W	Grommet（2 colour indication，Horizontal）
		D－F7BAL＊	Grommet（2 colour Water resistant，Horizontal）
		D－F7口F	Grommet（2 colour，With diagnosis output，Horizontal）
		D－F7NTL	Grommet（With timer，Horizontal）

＊This product（rotary cylinder）is not water resistant．Consult SMC when using D－F7BAL．
Operating Range／Hysteresis／Proper Mounting Positions of Auto Switch

Linear part

Rotary part

Hysteresis

Operating angle $\theta \mathrm{m}$ ：The value of the individual auto switch＇s movement range Lm converted into the shaft＇s rotation angle
Angle of hysteresis：The value of the auto switch＇s hysteresis as represented by an angle

Linear part			Size	D－A7／A8	D－F7口，J79	D－F7■W，J79W
Linear part	Operating range（mm）		32	12	6	8
			40	11		7
	Hysteresis（mm）		32	2	1	1
			40			
	Proper mounting position A （mm）		32	8.5 （9）	9	13
			40	11 （11．5）	11.5	15.5
	Rotary part	Size	Rotating angle	D－A71A8	D－F7口，J79	D－F7■W，J79W
Rotary part	Operating range（ $\theta \mathrm{m}$ ）	32		55	28	28
		40		46	27	27
	Angle of hysteresis （Degree）	32		10	4	4
		40		7	3	3
	Proper mounting position B （mm）	32	80° to 100°	24.5 （25）	25	25
			170° to 190°	32 （32．5）	32.5	32.5
		40	80° to 100°	31.5 （32）	32	32
			170° to 190°	41 （41．5）	41.5	41.5

The values in（parentheses）are of D－A72，A7 $\square \mathrm{H}, \mathrm{A} 80 \mathrm{H}$
Mounting and moving method of auto switch

（1）Slide the auto switch mounting spacer and place it on the auto switch mounting position of the body．（At this time，verify that the auto switch mounting nut that is inserted in the auto switch mounting rail is placed simultaneously in the auto switch mounting position．）
（2）Engage the tongue portion of the auto switch mounting arm into the groove portion of the auto switch mounting spacer．
（3）Lightly screw the auto switch mounting screw into the auto switch mounting nut，via the hole in the auto switch mounting arm．
（4）After verifying the detection position，tighten the mounting screw to secure the auto switch in place．（The tightening torque of the M3 screw is approximately 0.5 Nm ．）
（5）The detection position can be changed under the conditions described in step（3）．

Auto Switch Mounting Dimensions

Read Switch

D-A7 \square, A80

(In parentheses) are the
dimensions of "A72".

D-A79W

Solid State Switch

D-F7 \square, F7 $\square F$, F7BAL, F7NTL, J79

(In parentheses) are the
dimensions of "F7LF".

$$
\text { D-F7 } \square \mathbf{V}
$$

D-A7 $\square H$

Series MRQ
 Made to Order Specifications
 -X1 to X5

Consult SMC for the detailed specifications, dimensions and delivery.

Mounting screw dimensions (Distinction of stroke)

Size	\mathbf{S}	ZZ
$\mathbf{3 2}$	116	198
$\mathbf{4 0}$	128.5	216.5

The standard angle adjustment range of $\pm 5^{\circ}$ (one side) is changed to ${ }_{-95^{\circ}}^{+5^{\circ}}$ in this type.

	(mm)
Size	L
$\mathbf{3 2}$	Max. 32
$\mathbf{4 0}$	Max. 31.5

Possible to change the specification from standard to"-X5"
Specify the part number for hexagon socket head cap screw for angle adjustment referring to the list below.

Size	Part no.	Attached parts: Hexagon socket head cap	1 pc.
$\mathbf{3 2}$	P317010-13	screw Hexagon nut with flange	1 pc.
$\mathbf{4 0}$	Seal washer	1 pc.	
*One set of the actuator requires two sets of the hexagon socket head cap screws.			

Series MRQ
 Made to Order Specifications
 -X10

Consult SMC for further information on specifications, dimensions and delivery.

4
 Long Stroke (101 to 200 mm) -X10
 *Refer to the table of number of the auto switches mounted below.

Acceptable side loading to the tip of piston rod F

	Size 32	Size 40
Stroke	$F(N)$	$F(N)$
105	9	15
110		
115		14
120	8	
125		13
130		
140		11
150	7	
175	7	
200	5	

Set at the closer factors to those indicated in the table for the acceptable side loading of strokes not indicated in the table.

Number of auto switches mounted

Linear motion Rotation	0	1	2
0	-	$0 S$	02
1	S 0	SS	S 2
2	20	2 S	-
n	n 0	nS	n 2

CombinationsofmadetoorderproductsNo. 1 to4areavailable.ConsultSMCforfurtherinformation.

[^0]: In the chart that depicts the moment of inertia and the rotation time，find the intersecting point of the lines that extend from the locations corresponding to $0.004 \mathrm{~kg} / \mathrm{m}^{2}$ on the vertical axis（moment of inertia） and to $0.9 \mathrm{~s} / 90^{\circ}$ on the horizontal axis（rotation time）．Select size 40 because the intersecting point is found within the selection range for size 40.

